Handbook summary

In its broadest sense, science is an evolving body of skills, theories and knowledge about the nature of the world, based on observation, measurement and experiment. In order to begin participating in tertiary science studies, students require a fundamental toolkit of scientific literacy that includes key concepts, language and skills. This unit provides an overview of, and grounding in, fundamental scientific concepts, including the nature of matter and energy, and the flow of energy and cycling of matter through key processes in the biosphere. Integrating these concepts within a framework of a contemporary issue, climate change, enables students to build skills in applying scientific concepts, methods and problem-solving techniques, as well as furthering an understanding of interrelationships between science and other aspects of society. The unit imparts a basic body of essential scientific knowledge, as well as facilitating skills in collecting and analysing information and writing coherent explanations within a scientific framework.

Credit point value

10 credit points

Prerequisite/s

-

Corequisite/s

-

Unit incompatible with and not to be counted for credit with

-

Assumed knowledge

-

Unit level

Level Z — Non-award preparatory unit

Attendance requirements

Students are expected to attend all classes. Educational research consistently demonstrates that this attendance level is associated with a high likelihood of achieving a passing grade.

This unit will require you to complete practical and/or workshop activities in the science laboratory throughout this term.

Laboratory inductions

All Science, Engineering, Construction Management and Health Science students are required to complete an online laboratory induction at the beginning of each term.

Before you can participate in the practical activities you are required to complete an online laboratory induction and pass an assessment based on this activity.
You will be informed of the procedure for completing the laboratory induction via vUWS.

It is the responsibility of the individual student to complete the laboratory induction and pass the assessment before the first practical activity takes place. Students who have not completed the laboratory induction and assessment will not be permitted to enter the laboratory. Any student who misses a practical activity will receive a mark of zero for that activity.

Enrolment restrictions

Learning outcomes

On successful completion of this unit, students should be able to:

1. solve real-life problems involving mathematical concepts and construct appropriate graphs, charts and tables and interpret them
2. extract information from written text, graphs and tables and critically evaluate this information and evidence
3. describe the structure of the atom and relate this to the formation of molecules and ions
4. identify chemical compounds which make up organisms and classify organic molecules according to the arrangement of the chemical bonds
5. describe energy changes in chemical reactions and identify and explain chemical reactions important in the environment
6. explain the role of living systems in the cycling of matter and flow of energy, and
7. apply the principles of the Scientific Method to solving problems in science and assess conclusions in relation to evidence and sources.

Unit content

In this unit students will learn about:

- basic mathematical operations and data handling
- simple and complex substances
- biologically important molecules
- chemical reactions and energy
- biochemical reactions and energy, and
- applying concepts: global climate change.

Mode of delivery

This unit will consist of two three-hour tutorial/workshops each week plus online activities via the unit’s vUWS site.

Online learning requirements

Essential requirements

Essential texts:

Further resources:

Essential equipment:
- Laboratory coat
- Safety goggles
ASSESSMENT ITEMS AND WEIGHTING

Assessment for this unit will be based on the following components:

<table>
<thead>
<tr>
<th>Task</th>
<th>Weighting</th>
<th>Learning outcomes assessed</th>
<th>Mandatory task</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intra-session exam (data handling) — 1 hour</td>
<td>10%</td>
<td>1, 2, 7</td>
<td>Yes</td>
</tr>
<tr>
<td>2. Intra-session (mid-term) exam — 1.5 hours</td>
<td>20%</td>
<td>1–5</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Portfolio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Part A: Reflective learning journal — 3 submissions (15%)</td>
<td>40%</td>
<td>1–7</td>
<td>Yes</td>
</tr>
<tr>
<td>b. Part B: Class-based activities (10%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Part C: Laboratory log/workbook — 3 submissions (15%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Final exam — 2 hours</td>
<td>30%</td>
<td>1–7</td>
<td>Yes</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For details of assessment due dates, please refer to the learning guide for this unit.

All marks will be determined in accordance with The College [Assessment Policy](#). All assessment tasks are mandatory unless otherwise specified. Should a student fail to attempt/submit the first formal assessment task in a unit, they will be deemed to be at risk and will need to follow an intervention plan in order not to receive a Fail Non-Submission (FNS) grade. However, failure to attempt/submit all other mandatory assessment tasks will result in an immediate FNS grade for the unit.

Students must attain a mark of at least 50% overall in order to pass the unit.

Successful completion of this unit will not be counted for academic credit in any future studies at Western Sydney University.