FINAL EXAMINATION
AUTUMN SESSION 2010

SCHOOL OF COMPUTING & MATHEMATICS

<table>
<thead>
<tr>
<th>Student Family Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student Given Names:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT ALGEBRA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>200193</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Allowed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hours plus 10 minutes reading time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Questions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Six(6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Number of Pages:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephen Lack</td>
</tr>
</tbody>
</table>

INSTRUCTIONS
PLEASE READ CAREFULLY BEFORE PROCEEDING

1 Write your name and student number on the top of this examination paper and on ALL answer booklets.

2 THIS IS A CLOSED BOOK EXAMINATION.

3 Answer all questions in the answer booklets provided.

4 There are 100 marks available in this exam. The value of each question is indicated.

5 Non-programmable calculators may be used.

6 Full justification and/or working must be shown in order to obtain full marks for a question.

DO NOT TAKE THIS PAPER FROM THE EXAMINATION ROOM
Question 1. (3+2+2+2+3+2+4=20 marks)

a) Find the remainder when 13^{2010} is divided by 18.
b) Find $\gcd(2328, 7315)$.
c) Find all solutions of $14x \equiv 6 \pmod{18}$.
d) Find all solutions of $x^2 \equiv x \pmod{6}$.
e) Write out the multiplication table of \mathbb{Z}_6.
f) For integers a and b, define what the statement $a \equiv b \pmod{18}$ means.
g) State carefully what the division algorithm (for integers) allows you to do.
h) Suppose that a, b, and c are integers for which $a \mid bc$ and $\gcd(a, c) = 1$. Show that $a \mid b$.

Question 2. (2+2+3+4+4=15 marks)

a) Explain why \mathbb{Z}_n is not a field if n is composite.
b) If $z = a + bi$, for $a, b \in \mathbb{R}$, what is $1/z$?
c) Find all solutions of $z^3 = 1$ in \mathbb{C}.
d) Find all solutions of $z^3 - 3z^2 + 5z - 3 = 0$ in \mathbb{C}, given that $z = 1$ is a solution.
e) Let $p(z)$ be a polynomial with real coefficients for which $p(1 + i) = 0$. Show that $p(1 - i) = 0$.

Question 3. (4+2+3+2+2+2=15 marks)

a) Factorize $x^3 + x^2 + 1$ into irreducible polynomials in $\mathbb{Z}_3[x]$.
b) How many elements does $\mathbb{Z}_3[x]/\langle x^3 + x^2 + 1 \rangle$ have?
c) Find the inverse of $x + 1$ in $\mathbb{Z}_3[x]/\langle x^3 + x^2 + 1 \rangle$.
d) Is $\mathbb{Z}_3[x]/\langle x^3 + x^2 + 1 \rangle$ a field? Explain.
e) Is $\mathbb{R}[x]/\langle x^3 + x^2 + 1 \rangle$ a field? Explain.
f) Find the principal representative of $2x^4 + 3x^2 + 4x + 5$ in $\mathbb{Q}[x]/\langle x^3 + x^2 + 1 \rangle$.

Page 2 of 5
Question 4. (4+5+5+4 = 18 marks)

a) (i) Write the following permutation as a product of disjoint cycles.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 4 & 6 & 8 & 2 & 7 & 1 & 5 & 9
\end{pmatrix}
\]

(ii) Simplify the permutation \((1 3 4 6)(2 4 6)(3 4 5)(5 1)\).

b) \(\mathbb{U}_n\) is the group of units of \(\mathbb{Z}_n\).
 (i) List the elements of \(\mathbb{U}_{14}\).
 (ii) Show that \(\mathbb{U}_{14}\) is isomorphic to \(\mathbb{Z}_6\).

c) The dihedral group \(D_4\) is the group of symmetries of the square.
 (i) Is \(D_4\) abelian? Justify your answer.
 (ii) Is \(D_4\) isomorphic to a subgroup of \(\mathbb{U}_{18}\)? Justify your answer.

d) This question is about a group \(G\) with the following incomplete Cayley table.

\[
\begin{array}{cccccc}
& u & v & w & x & y & z \\
u & u & & & & & \\
v & & x & & & & \\
w & & & y & u & & \\
x & & & & y & v & \\
y & & & & & & \\
z & & & & & & \\
\end{array}
\]

(i) Complete the table.
(ii) Name a group that is isomorphic to \(G\).
Question 5. (8+12 = 20 marks)

a) This part of the question is about groups of order 6.
 (i) Give an example of a group of order 6 with an element of order 6.
 (ii) Give an example of a group of order 6 which has no element of order 6. Explain clearly why your group cannot have an element of order 6.
 (iii) Explain why no group of order 6 can ever have an element of order 4.
 (iv) Does there exist a group of order 6 with exactly one element of order 6?

b) This part of the question is about the symmetric group S_n; it is the group of all permutations of \{1, 2, \ldots, n\}.
 (i) What is the order of S_n?
 (ii) There is a group homomorphism $f : S_n \to \mathbb{Z}_2$ defined by
 \[f(\alpha) = \begin{cases}
 0 & \text{if } \alpha \text{ is even} \\
 1 & \text{otherwise}
 \end{cases} \]
 What would you have to do to check that f is a homomorphism? (You are not being asked to actually check it, just to state what you would need to do.)
 (iii) Calculate $f(\alpha)$ in the case $\alpha = (1 \ 3 \ 5 \ 7)(1 \ 2 \ 3 \ 4 \ 5)(2 \ 3 \ 5)(3 \ 1 \ 4 \ 2 \ 7 \ 5)$.
 (iv) Show that the set A_n of even permutations is a normal subgroup of S_n, using only facts given on this page.
 (v) What is the order of the quotient group S_n/A_n?
 (vi) For which values $n > 1$ is S_n a cyclic group? Be sure to justify your answer fully.
Question 6. (2+1+2+2+5 = 12 marks)

In this question \(\varphi \) denotes the Euler totient (phi) function.

a) Explain carefully why \(\varphi(p) = p - 1 \) if \(p \) is prime

b) Calculate \(\varphi(253) \).

c) You are going to use the RSA cryptosystem with encryption key \((253, e) \). What property does \(e \) have to satisfy?

d) Show that \(e = 147 \) satisfies this property

e) A message has been encoded using the encryption key \((253, 147) \) for the RSA cryptosystem and the correspondence

\[
\begin{align*}
A & \rightarrow 10 & J & \rightarrow 19 & S & \rightarrow 28 \\
B & \rightarrow 11 & K & \rightarrow 20 & T & \rightarrow 29 \\
C & \rightarrow 12 & L & \rightarrow 21 & U & \rightarrow 30 \\
D & \rightarrow 13 & M & \rightarrow 22 & V & \rightarrow 31 \\
E & \rightarrow 14 & N & \rightarrow 23 & W & \rightarrow 32 \\
F & \rightarrow 15 & O & \rightarrow 24 & X & \rightarrow 33 \\
G & \rightarrow 16 & P & \rightarrow 25 & Y & \rightarrow 34 \\
H & \rightarrow 17 & Q & \rightarrow 26 & Z & \rightarrow 35 \\
I & \rightarrow 18 & R & \rightarrow 27 \\
\end{align*}
\]

The encoded message is 74-158-5-155-49. Decode it.